If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2=140
We move all terms to the left:
X^2+X^2-(140)=0
We add all the numbers together, and all the variables
2X^2-140=0
a = 2; b = 0; c = -140;
Δ = b2-4ac
Δ = 02-4·2·(-140)
Δ = 1120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1120}=\sqrt{16*70}=\sqrt{16}*\sqrt{70}=4\sqrt{70}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{70}}{2*2}=\frac{0-4\sqrt{70}}{4} =-\frac{4\sqrt{70}}{4} =-\sqrt{70} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{70}}{2*2}=\frac{0+4\sqrt{70}}{4} =\frac{4\sqrt{70}}{4} =\sqrt{70} $
| 10x-18=3-5x | | 32-16/3y+3y=9 | | 8x-58=52+3x | | 11+2x+35=x+34 | | 4+10q=9q-6 | | -12=16h+4(5-4h) | | 4x+11=3+6x | | 2x-x+5+3x=25 | | -9+3y-8y+9=35 | | 3(-1x+9)=-9 | | 5x-12-9x=x+7+3x | | -13x-169=146-4x | | 13=9|p+3|+40 | | 6x+14=4x+12 | | 1x+2x+1=56 | | 4x-3+3x=-2 | | f(-6)=|-8| | | 11k-7k=20 | | -2(2x+3)=-6(x+1)+10 | | 32-48x+2=3x | | -2(8w+4)=-16w-8 | | 32+3x+20=180 | | -16x=-10(x+3) | | 5(4-x)=-5x | | -3j=-9-2j | | 2(n-12)-1=1 | | 2/6=x/15 | | 4x+11+55=180 | | 11k-7k=29 | | –5(s+30)=–17 | | 3x/4=8/16 | | –5(s+30)=–17. |